饰带楼将会介绍江西高考数学试卷,有相关烦恼的人,就请继续看下去吧。

2023年江西高考数学考什么卷子?

2023年江西高考数学考什么卷子?

2023年江西高考数学考的是全国乙卷。该年的江西高考采用的是语数外+文综/理综模式,其中数学科目使用的是全国乙卷,由教育部命题。全国乙卷的语文、数学、外语、文科综合、理科综合均由教育部考试中心统一命题,数学满分为150分。如需更多信息,建议访问江西省教育考试院官网或教育部考试中心官网进行查询。

江西高考用的是全国几卷

江西高考用的是全国乙卷考试。

满分750分。高考试题全国卷简称全国卷,教育部考试中心组织命制的、适用于全国大部分省区的高考试卷,目的在于保证人才选拔的公正性。

高考全国卷不会因考题差别导致教材差别,一切都是遵照高考大纲命题的。高考后试卷不能拿走,高考试卷会密封后送到指定的阅卷场所,阅卷后的高考试卷属于高考档案的一种,要存档保留一定年限的,考生是无法再次接触到自己的高考试卷的。

备考建议

有人说,我确实对数学不感兴趣,就是没有数学思维……其实不是任何人一开始都会对数学感兴趣,而是在你的不断坚持和探索中发现数学的乐趣!我坚信,兴趣是最好的老师,你特别喜欢玩魔兽,你就会千方百计的找寻通关的技巧,如果你特别喜欢数学,那么恭喜你,你的数学一定能够很棒的。要有种数学虐我千百遍,我待数学如初恋的气魄和坚守!

数学,是一门严谨的学科,任何公式的推导,概念的定义,都有它的原因。数学教给你的不仅仅是如何算题,更是教给你一种看待任何事物的态度。

当我们碰到任何事物都是,刚开始你对它一无所知(一道题),你开始了解它是干什么的(读题干,找条件),然后你要解决这个问题(解题),但是如果你觉得这个问题太难,肯定就要化繁求简(由已知来推导未知),最终经过一番磨难,搞定这个问题(解出一道压轴题)!从数学中,慢慢培养自己对待事物严谨的态度!

2023江西高考数学难不难

2023江西高考理科数学试题难度适中。

江西高考理科数学试卷总体来说不难,试题在材料选取、设答方式、作答要求等方面,与高中理科数学教学高度契合。

一、难度状况

1,2023年江西高考理科数学试题总体来说不难,江西高考英语试卷是全国乙卷。从乙卷整体的命题看,虽然很多孩子在叫喊着,都没见过,老师都没讲过之类的话,但是江西高考理科数学试题从头至尾,没有超纲题目,没有高等数学的超纲知识,也没有类似数论等竞赛内容,所有题目的知识点都中规中矩。

2,2023江西高考理科数学试题考试的内容包括基本的数学思想,解题方法,解析几何,概率统计,数学分析等多个部分。这些内容的考察可以帮助江西学生们学习和掌握数学知识,有效提高学习效率。

二、具体情况

1,江西高考理科数学试题难度一般。江西高考理科数学试卷加强试题情境设计,提高学科关键能力考查有效性,设置复杂情境考查学科能力的综合运用。

2,2023江西高考理科数学试题考察方式正慢慢转变对江西考生能力、思维的考察,而摒弃机械的模板化学习。2023江西高考理科数学试题一定也会特别灵活,难度方面会让江西学生表面觉得简单,但又很难下手做。需要江西学生基本功扎实,知识学的灵活,能够随机应变。

三、注意事项

1、规范答题很重要:找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,高考评分是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。答题时,尽量使用数学符号,这比文字叙述要节省时间且严谨。

2、即使过程比较简单,也要简要地写出基本步骤,否则会被扣分。经常看到考生的卷面出现“会而不对”“对而不全”的情况,造成考生自己的估分与实际得分相差很多。尤其是平面几何初步中的“跳步”书写,使考生丢分,所以考生要尽可能把过程写得详尽、准确。

3、分步列式,尽量避免用综合或连等式:高考评分是分步给分,写出每一个过程对应的式子,只要表达正确都可以得到相应的分数。有些考生喜欢写出一个综合或连等式,这种方式就不好,因为只要发现综合式中有一处错误,就可能丢过程分。对于没有得出最后结果的试题,分步列式也可以得到相应的过程分,由此增加得分机会

4、尽量保证证明过程及计算方法大众化:解题时,使用通用符号,不易吃亏。有些考生为图简便使用一些特殊方法,可一旦结果有错,就会影响得分。

2005江西高考数学题及答案

2005年江西高考数学试卷(理科)

一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

1.设集合 则

(A) (B) (C) (D)

2.设复数 若 为实数,则

(A) (B) (C) (D)

3.“ ”是“直线 与圆 相切”的

(A)充分不必要条件 (B)必要不充分条件

(C)充分必要条件 (D)既不充分又不必要条件

4. 的展开式中,含 的正整数次幂的项共有

(A)4项 (B)3项 (C)2项 (D)1项

5.设函数 ,则 为

(A)周期函数,最小正周期为 (B)周期函数,最小正周期为

(C)周期函数,最小正周期为 (D)非周期函数

6.已知向量 ,若 ,则 与 的夹角为

(A) (B) (C) (D)

7.已知函数 的图象如右图所示

(其中 是函数 的导函数).下

面四个图象中 的图象大致是

8.若 ,则

(A) (B) (C) (D)

9.矩形ABCD中, ,沿AC将矩形ABCD折成一个直二面角 ,则四面体ABCD的外接球的体积为

(A) (B) (C) (D)

10.已知实数 满足等式 ,下列五个关系式

① ② ③ ④ ⑤

其中不可能成立的关系式有

(A)1个 (B)2个 (C)3个 (D)4个

11.在 中,O为坐标原点, ,则当 的面积达到最大值时,

(A) (B) (C) (D)

12.将 这 个数平均分成三组,则每组的三个数都成等差数列的概率为

(A) (B) (C) (D)

二.填空题:本大题共的小题,每小题4分,共16分.请把答案填在答题卡上.

13.若函数 是奇函数,则

14.设实数 满足 ,则 的最大值是_____

15.如图,在直三棱柱 中,

分别为 的中点,沿棱柱的表面从

E到F两点的最短路径的长度为______

16.以下四个关于圆锥曲线的命题中

①设A、B为两个定点, 为非零常数,若 ,则点P的轨迹为双曲线;

②过定圆C上一定点A作圆的动弦AB,O为坐标原点,若 ,则动点P的轨迹为椭圆;

③方程 的两根可分别作为椭圆和双曲线的离心率;

④双曲线 与椭圆 有相同的焦点.

其中真命题的序号为________(写出所有真命题的序号).

三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤.

17.(本小题满分12分)

已知函数 为常数),且方程 有两个实根为

(1)求函数 的解析式;

(2)设 ,解关于 的不等式:

18.(本小题满分12分)

已知向量 ,令

是否存在实数 ,使 (其中 是 的导函数)?若存在,则求

出 的值;若不存在,则证明之.

19.(本小题满分12分)

A、B两位同学各有五张卡片,现以投掷均匀硬币的形式进行游戏,当出现正面朝上时A赢

得B一张卡片,否则B赢得A一张卡片.规定掷硬币的次数达到9次时,或在此前某人已赢

得所有卡片时游戏终止.设 表示游戏终止时掷硬币的次数.

(1)求 的取值范围;

(2)求 的数学期望

20.(本小题满分12分)

如图,在长方体 中, ,点E在棱AB上移动.

(1)证明: ;

(2)当EAB的中点时,求点E到面 的距离;

(3)AE等于何值时,二面角 的大小为 .

21.(本小题满分12分)

已知数列 的各项都是正数,且满足:

(1)证明

(2)求数列 的通项公式

22.(本小题满分14分)

如图,设抛物线 的焦点为F,动点P

在直线 上运动,过P作抛物线

C的两条切线PA、PB,且与抛物线C分别相切

于A、B两点

(1)求 的重心G的轨迹方程;

(2)证明

2005年普通高等学校招生全国统一考试(江西卷)

理科数学参考答案

一、选择题

1.D 2.A 3.A 4.B 5.B 6.C 7.C 8.C 9.C 10.B 11.D 12.A

二、填空题

13. 14. 15. 16.③④

三、解答题

17.解:(1)将 得

(2)不等式即为

①当

②当

③ .

18.解:

19.解:(1)设正面出现的次数为m,反面出现的次数为n,则 ,可得:

(2)

20.解法(一)

(1)证明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E

(2)设点E到面ACD1的距离为h,在△ACD1中,AC=CD1= ,AD1= ,

(3)过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,

∴∠DHD1为二面角D1—EC—D的平面角.

设AE=x,则BE=2-x

解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)

(1)

(2)因为E为AB的中点,则E(1,1,0),从而 ,

,设平面ACD1的法向量为 ,则

也即 ,得 ,从而 ,所以点E到平面AD1C的距离为

(3)设平面D1EC的法向量 ,∴

由 令b=1, ∴c=2,a=2-x,

依题意

∴ (不合,舍去), .

∴AE= 时,二面角D1—EC—D的大小为 .

21.解:(1)方法一 用数学归纳法证明:

1°当n=1时,

∴ ,命题正确.

2°假设n=k时有

∴ 时命题正确.

由1°、2°知,对一切n∈N时有

方法二:用数学归纳法证明:

1°当n=1时, ∴ ;

2°假设n=k时有 成立,

令 , 在[0,2]上单调递增,所以由假设

有: 即

也即当n=k+1时 成立,所以对一切

(2)下面来求数列的通项: 所以

,

又bn=-1,所以

22.解:(1)设切点A、B坐标分别为 ,

∴切线AP的方程为:

切线BP的方程为:

解得P点的坐标为:

所以△APB的重心G的坐标为 ,

所以 ,由点P在直线l上运动,从而得到重心G的轨迹方程为:

(2)方法1:因为

由于P点在抛物线外,则

同理有

∴∠AFP=∠PFB.

方法2:①当 所以P点坐标为 ,则P点到直线AF的距离为:

所以P点到直线BF的距离为:

所以d1=d2,即得∠AFP=∠PFB.

②当 时,直线AF的方程:

直线BF的方程:

所以P点到直线AF的距离为:

,同理可得到P点到直线BF的距离 ,因此由d1=d2,可得到∠AFP=∠PFB.